Оптомеханический эксперимент в университете Ганновера

Ш.Л. Данилишин¹ Коллабораторы: Ф.Я. Халили¹, К. Yamamoto², D. Friedrich³, T. Westphal³, H. Kaufer³ K. Somiya⁴, S. Goßler, K. Danzmann³, R. Schnabel³

 $^1\Phi$ изический факультет МГУ им. М.В.Ломоносова, Кафедра физики колебаний $^2 \, {\rm Trento} \, \, {\rm University}$ $^3 {\rm Leibniz}$ Universität Hannover and MPI für Graviatationsphysik (AEI)

Семинар кафедры физики колебаний, Москва 1 октября 2010

Outline

💿 Мембранный интерферометр Майкельсона-Саньяка

Пепловые эффекты в мембранном интерферометре

æ

Содержание

💿 Мембранный интерферометр Майкельсона-Саньяка

епловые эффекты в мембранном интерферометре

æ

4 3 5

• 3 > 1

Оптомеханика в квантовом режиме

Оптомеханические системы — системы, где свет взаимодействует с механическим объектом (центром масс зеркала) через световое давление.

Оптомеханика в квантовом режиме

О чем мечтают оптомеханические люди?

- Достичь СКП и/или увидеть шум светового давления;
- Увидеть нулевое состяние механического осциллятора (сверхпроводящие люди уже видели :-();
- Приготовить сильно неклассическое состояние с отрицательнозначной ф-цией Вигнера (СП-люди опять опередили!) и верифицировать его (еще есть шанс!);
- "We need a vision!" (Я. Чен): Надо придумать применение, т.е. как с помощью негауссовского механического состояния поднять свое (не очень прибыльно :-(), а лучше, разрушить "в труху" чужое народное хозяйство (получив при этом немалые ассигнования от военных)!

Содержание

💿 Мембранный интерферометр Майкельсона-Саньяка

пловые эффекты в мембранном интерферометре

ъ

Мембранный интерферометр Майкельсона-Саньяка (AEI, Uni Hannover)

ОМ эксперимент в Ганновере

Цель: измерить с помощью интерферометра обратное флуктуационное влияние света на мембрану из нитрида кремния

Основные черты:

- Балансная схема позволяет бороться с шумами лазера;
- Добавление зеркал рециркуляции мощности (PRM) и сигнала (SRM) позволят достичь значительного выигрыша как в сигнале, так и в величине ОМ связи;
- Охлаждение в термостате $(T \sim 1K)$ должно подавить тепловой шум ниже уровня квантовых шумов и позволить достичь цели эксперимента.

Yamamoto, K. et al., Phys. Rev. A 81, 033849 (2010).

Введение Мембранный интерферометр Майкельсона-Са

Чем хороши мембраны из нитрида кремния?

Как их делают?

Химическим осаждением на кремниевую подложку из дихлорсилана (SiH₂Cl₂) и аммиака (NH₃) при температуре 700 - 900° С (Low Pressure Chemical Vapor Deposition)

На подложку (с обр. стороны) наносится фоторезист, затем — маска, после чего часть подложки травится едким кали (КОН) до слоя нитрида.

Чем же сей продукт хорош?

- SiN прозрачен в ближнем ИК ($\lambda = 1.064 \ \mu m$): $n \simeq 2 + i 1.5 \times 10^{-4}$;
- Si и SiN имеют разные коэффициенты теплового расширения \Rightarrow при остывании, в слое SiN возникает сильное напряжение $(\sigma_0 \sim 10^7 10^9 \text{ Па}) \Rightarrow$ большие значения $Q_m f_m \sim 10^{13} \text{ c}^{-1}$;
- высокая частота колебаний (f_m ~ 10⁵ 10⁷ Гц) позволяет не обращать внимание на большинство низкочастотных шумов;
- малые размеры позволяют размещение в криостате;
- добротность мембран с уменьшением температуры только растет

Чем он плох?

- низкий коэффициент отражения \Rightarrow ослабленная ОМ связь $\propto r^2$;
- большая мощность света увеличивает ОМ связь ⇒ нагрев из-за поглощения;
- нагрев мембраны неравномерен \Rightarrow большие градиенты $T \Rightarrow$ неравновесный тепловой шум (?)

Чувствительность планируемого эксперимента

Параметр	Значение
масса, <i>m</i>	125 нг
$\Omega_m/2\pi$	75 kГц
Q_m	10^{7}
температура, T	1 K
коэф. отраж., R	0.35
мощность, P_c	1 Вт
длина волны, λ	$1.064~\mu{\rm m}$

Тест на квантовость

 $rac{2k_BT}{\hbar\Omega_mQ_m}\simeq 0.06\ll 1$ ПРОЙДЕН!

Проблема нагрева вследствие поглощения:

В силу малой теплопроводности при низких температурах, прохождение 1 Вт через мембрану разогревает её в центре до 20 К.

Как это выглядит в реальности

фото из презентации К. Yamamoto, CLIO-MQM Workshop, Tokyo (2010)

< 4 →

Как это выглядит в реальности

фото из презентации К. Yamamoto, CLIO-MQM Workshop, Tokyo (2010)

Введение Мембранный интерферометр Майкельсона-Са

Как это выглядит в реальности

фото из презентации К. Yamamoto, CLIO-MQM Workshop, Tokyo (2010)

Текущие экспериментальные результаты

Ш.Л. Данилишин ОМ эксперимент в университете Ганновера

Текущие экспериментальные результаты

Дрейф частоты колебаний:

- Собственные частоты механических мод уменьшаются при росте циркулирующей мощности;
- Сдвиг особенно заметен при помещении мембраны в пучность оптической моды интерферометра;
- Имеет место "критическая" мощность, при которой "измерять уже нельзя";

K. Yamamoto, Memorandum of April 14, 2010 • more data

Предположения:

- Сдвиг связан с тепловым расширением при поглощении света в мембране;
- Разное поведение в пучносте и узле очевидно, так как в узле поглощается на 2 порядка меньшая мощность, нежели в пучности;
- "Критическая" мощность соответствует обнулению внутреннего напряжения в мембране и превращению её в "пластинку";

Содержание

💿 Мембранный интерферометр Майкельсона-Саньяка

Пепловые эффекты в мембранном интерферометре

ъ

Поглощение в диэлектрических мембранах.

Поглощение завис<u>ит от:</u>

- Комплексного показателя преломления: $n = n' + in'' = 2.2 + 1.5 \times 10^{-4}i$ A.M. Jayich et al., New J. Phys, **10**, 095008 (2008);
- 0 оптической толщины мембраны $kd = 2\pi \frac{a}{\lambda};$
- расположения относительно пространственного распределения внутрирезонаторного поля.

Симметричная мода (пучность):

$$\mathcal{A}_s = 4n'' \frac{n'kd + \sin n'kd}{n'^2 + 1 - (n'^2 - 1)\cos n'kd}$$
$$\simeq 4n'n''kd \simeq 4 \times 10^{-4} \times \left(\frac{d}{50 \text{ nm}}\right)$$

Асимметричная мода (узел):

$$\mathcal{A}_{as} = 4n'' \frac{n'kd - \sin n'kd}{n'^2 + 1 + (n'^2 - 1)\cos n'kd}$$
$$\simeq \frac{n'n''(kd)^3}{3} \simeq 2.8 \times 10^{-6} \times \left(\frac{d}{50 \text{ nm}}\right)^3$$

Как и следовало ожидать, в узле поглощение действительно минимально.

Ф.Я. Халили, "Послание к ганноверианам" от 11.02.2010

Теплоотвод от мембраны.

Механизм генерации тепла

Гауссов световой пучок частично поглощается, создавая поле источников тепла внутри мембраны.

Пр
и $T_{\rm env}=300$ К преобладает радиационный механизм, а пр
и $T_{\rm env}=10$ К — теплопроводность.

Температурное поле в мембране

Стационарное уравнение теплопроводности

$$\varepsilon\sigma[T^4(x, y) - T^4_{env}] + hdiv(\kappa\nabla T(\mathbf{r})) + hg(\mathbf{r}) = 0$$

где в качестве источника взят гауссов пучок:

$$g(m{r}) = rac{2P_{
m abs}}{\pi w_0^2 h} e^{-2r^2/w_0^2}$$
и

$$T(\pm \frac{a}{2}, y) = T(x, \pm \frac{a}{2}) = T_{\text{env}} = 300 \text{ K}$$

Параметры мембраны	знач.@300К
толщина h , nm	50
длина $a, \mu m$	1000
радиус пучка $w_0, \mu m$	100
плотность $ ho_{ m SiN},{ m kg/m}^3$	3000
теплопр. κ , W/(m · K)	3
теплоёмк. $C, J/(kg \cdot K)$	400
модуль Юнга У, GPa	290
коэф. Пуассона ν	0.27
коэф. т. р. α_T , K ⁻¹	2.7×10^{-6}

T. Westphal, Diplomarbeit (2009); MIT course on MEMS design by Y.Shi, C.Livermore and J.Voldman

Температурное поле в мембране

Особенности низких температур

При низкой T теплопроводность κ есть ϕ -ция T:

 $\kappa(T) = \kappa_0 T^n$

 $(\kappa_0 \simeq 4 \times 10^{-3} \text{ W}/(\text{m} \cdot \text{K}^{n+1}), n \simeq 2).$ При этом тепло оказывается "запертым" в мембране, так как $\kappa(T)$ быстро спадает к краям мембраны.

Параметры мембраны	знач.@10К
Trapamerph nm	50
толщина <i>п</i> , пп	1000
длина $a, \mu m$	1000
радиус пучка $w_0, \mu m$	100
плотность $ ho_{SiN}$, kg/m ³	3000
теплопр. κ , W/(m · K)	0.4
теплоёмк. $C, J/(kg \cdot K)$	1
модуль Юнга У, GPa	290
коэф. Пуассона ν	0.27
коэф. т. р. α_T , K^{-1}	2.7×10^{-6}

T. Westphal, Diplomarbeit (2009); MIT course on MEMS design by Y.Shi, C.Livermore and J.Voldman

B.L. Zink, F. Hellman, Solid State Comm. 129, 199 (2004)

Температурное поле в мембране

Особенности низких температур

При низкой T теплопроводность κ есть ϕ -ция T:

 $\kappa(T) = \kappa_0 T^n$

 $(\kappa_0 \simeq 4 \times 10^{-3} \text{ W}/(\text{m} \cdot \text{K}^{n+1}), n \simeq 2).$ При этом тепло оказывается "запертым" в мембране, так как $\kappa(T)$ быстро спадает к краям мембраны.

Параметры мембраны	знач.@10К
толщина h , nm	50
длина $a, \mu m$	1000
радиус пучка $w_0, \mu m$	100
плотность $ ho_{ m SiN},{ m kg/m}^3$	3000
теплопр. κ , W/(m · K)	0.4
теплоёмк. $C, J/(kg \cdot K)$	1
модуль Юнга Y, GPa	290
коэф. Пуассона $ u$	0.27
коэф. т. р. α_T , K ⁻¹	2.7×10^{-6}

T. Westphal, Diplomarbeit (2009); MIT course on MEMS design by Y.Shi, C.Livermore and J.Voldman

Теория дрейфа собственных частот.

Физический механизм явления

- световой пучок вызывает неоднородный нагрев мембраны с распределением температуры $T(x,y) \Longrightarrow$
- отдельные участки мембраны испытывают тепловое расширение в соответствии с локальной температурой: $\varepsilon_{ij} = \alpha_T T(x, y) \delta_{ij}/3 \Longrightarrow$
- внутреннее натяжение мембраны $\sigma_{ij}^{(0)} = \sigma_0 \delta_{ij}$ ослабевает:
 - $\sigma_{ij} = \sigma_{ij}^{(0)} \sigma_{ij}^{(T)} \Longrightarrow$
- собственные частоты $f_{k,l}$ моды (k,l) уменьшаются, так как зависят от натяжения:

$$f_{k,l}^{(0)} = \sqrt{\frac{\sigma_0}{4\rho_{SiN}a^2}(k^2 + l^2)} < f_{k,l}^{(T)} \sim \sqrt{\frac{\bar{\sigma}(T)}{4\rho_{SiN}a^2}(k^2 + l^2)}$$

(▲ 臣) ▲ 臣) 臣

Теория дрейфа собственных частот.

Система уравнений, описывающая явление:

• 2D стационарное ур-е теплопроводности отн. T(x,y)

$$\frac{\varepsilon\sigma}{h}[T^4 - T_{\rm env}^4] + {\rm div}\big[\kappa(T)\nabla T\big] + \frac{2P_{abs}}{\pi w_0^2 h}e^{-2r^2/w_0^2} = 0;$$

• 2D стационарные уравнения упругости для смещения в плоскости мембраны $\boldsymbol{u} = [x' - x; \ y' - y]$ с термоупругим членом:

$$\Delta \boldsymbol{u} + \frac{1}{1-2\nu} \nabla \mathrm{div} \boldsymbol{u} - \frac{2(1+\nu)\alpha_T}{1-2\nu} \nabla T = 0;$$

• 2D уравнение поперечных колебаний $\zeta(x, y)$ мембраны с неоднородным натяжением $\sigma_{ij}(x, y)$, являющееся решением предыдущего уравнения:

$$\rho_{SiN}\frac{\partial\zeta}{\partial t} + \frac{\partial}{\partial x}\left[\sigma_{xx}(\boldsymbol{r})\frac{\partial\zeta}{\partial x} + \sigma_{xy}(\boldsymbol{r})\frac{\partial\zeta}{\partial y}\right] + \frac{\partial}{\partial y}\left[\sigma_{xy}(\boldsymbol{r})\frac{\partial\zeta}{\partial x} + \sigma_{yy}(\boldsymbol{r})\frac{\partial\zeta}{\partial y}\right] = 0,$$

Теория дрейфа собственных частот.

Введение Мембранный интерферометр Майкельсона-Са

Теория дрейфа собственных частот.

Введение Мембранный интерферометр Майкельсона-С

Численный расчет собственных частот мембраны

Получен результат напоминающий или, если по-научному, гомеоморфный экспериментальным данным экспеданные. Неопределенности в материальных параметрах тонких плёнок затрудняют прямое сравнение.

Интересный факт:

Нагрев снимает вырождение с некоторых ранее вырожденных мод мембраны, например с (1,3) и (3,1). Чем это можно объяснить?

Численный расчет собственных частот мембраны

Получен результат напоминающий или, если по-научному, гомеоморфный экспериментальным данным экспеданные. Неопределенности в материальных параметрах тонких плёнок затрудняют прямое сравнение.

Интересный факт:

Нагрев снимает вырождение с некоторых ранее вырожденных мод мембраны, например с (1,3) и (3,1). Чем это можно объяснить?

О выборочном снятии вырождения собственных мод мембраны

Наблюдение:

Моды с нечётной суммой индексов остаются вырожденными, тогда как вырождение мод с чётной суммой индексов снимается.

Введение Мембранный интерферометр Майкельсона-С

О выборочном снятии вырождения собственных мод мембраны

Наблюдение:

Моды с нечётной суммой индексов остаются вырожденными, тогда как вырождение мод с чётной суммой индексов снимается.

О выборочном снятии вырождения собственных мод мембраны

Предположение:

• Любая линейная комбинация вырожденных мод также является нормальным колебанием системы: $u^{(1,3)\pm(3,1)} = u^{(1,3)} \pm u^{(3,1)};$

3 2 3

О выборочном снятии вырождения собственных мод мембраны

Предположение:

- Любая линейная комбинация вырожденных мод также является нормальным колебанием системы: $u^{(1,3)\pm(3,1)} = u^{(1,3)} \pm u^{(3,1)};$
- Аксиальная симметрия термоупругого взаимодействия приводит к выделению "более аксиально-симметричных" комбинаций;

Введение Мембранный интерферометр Майкельсона-С

О выборочном снятии вырождения собственных мод мембраны

Предположение:

- Любая линейная комбинация вырожденных мод также является нормальным колебанием системы: $u^{(1,3)\pm(3,1)} = u^{(1,3)} \pm u^{(3,1)}$;
- Аксиальная симметрия термоупругого взаимодействия приводит к выделению "более аксиально-симметричных" комбинаций;

Введение Мембранный интерферометр Майкельсона-С:

О выборочном снятии вырождения собственных мод мембраны

Предположение:

- Любая линейная комбинация вырожденных мод также является нормальным колебанием системы: $u^{(1,3)\pm(3,1)} = u^{(1,3)} \pm u^{(3,1)}$;
- Аксиальная симметрия термоупругого взаимодействия приводит к выделению "более аксиально-симметричных" комбинаций;
- Комбинации с пучностями ближе к центру более восприимчивы и демонстрируют сильный сдвиг частоты.

Введение Мембранный интерферометр Майкельсона-С

О выборочном снятии вырождения собственных мод мембраны

О выборочном снятии вырождения собственных мод мембраны

æ

Текущие выводы и виды на будущее

Текущие выводы

- Балансная схема интерферометра Майкельсона-Саньяка позволяет иметь чувствительность на уровне передовых ОМ экспериментов даже без зеркал рециркуляции, т.е., фактически, без резонаторов;
- Применение зеркал рециркуляции потенциально позволит улучшить чувствительность более, чем на порядок;
- Охлаждение до криогенных температур (~1 К) позволит понизить тепловой шум до уровня, ниже квантового шума интерферометра;
- Нагрев мембраны из-за поглощения может оказаться серьёзным препятствием, но есть надежда, что не настолько, насколько можно было бы ожидать;
- О Сдвиг собственных частот в зависимости от мощности может быть использован для измерения поглощения в тонких плёнках или для точного измерения мощности лазера;

Виды на будущее

- Нужно рассчитать тепловые шумы в мембране при неоднородном нагреве (неравновесная ситуация позволяет использовать ФДТ или нет?);
- Э Нужно выяснить основной механизм потерь в мембране и попытаться понять, какую ценную физическую информацию можно извлекать из мембраны;
- Э Нужно рассчитать, каковы требования к шумам для квантовых игр с мембраной и для использования оной в квантовом народном хозяйстве.

СПАСИБО

ЗА ВНИМАНИЕ!!!

Ш.Л. Данилишин ОМ эксперимент в университете Ганновера

Экспериментальные данные по сдвигу частот

Экспериментальные данные по сдвигу частот

Экспериментальные данные по сдвигу частот

Оптические моды интерферометра Майкельсона-Саньяка

Оптические моды интерферометра Майкельсона-Саньяка

- Асимметричная мода возбуждается накачкой через светлый порт. Мембрана располагается в узле данной моды для минимизации поглощения;
- Симметричная мода связана с тёмным портом и используется для измерения положения мембраны. Мембрана располагается в пучности данной моды для увеличения отклика;
- Как и в гравитационных антеннах, движение мембраны приводит к появлению связи между модами. В результате часть энергии накачки переходит в симметричную моду и детектируется фотодетектором.

Симметричная и асимметричная моды — вырождены при неподвижной мембране, и возбуждаются светом одной и той же частоты ω_0 .

Оптические моды интерферометра Майкельсона-Саньяка

Оптические моды интерферометра Майкельсона-Саньяка

Асимметричная мода

возбуждается накачкой через светлый порт. Мембрана располагается в узле данной моды для минимизации поглощения;

- Симметричная мода связана с тёмным портом и используется для измерения положения мембраны. Мембрана располагается в пучности данной моды для увеличения отклика;
- Как и в гравитационных антеннах, движение мембраны приводит к появлению связи между модами. В результате часть энергии накачки переходит в симметричную моду и детектируется фотодетектором.

Симметричная и асимметричная моды — вырождены при неподвижной мембране, и возбуждаются светом одной и той же частоты ω_0 .

Оптические моды интерферометра Майкельсона-Саньяка

Оптические моды интерферометра Майкельсона-Саньяка

Асимметричная мода

возбуждается накачкой через светлый порт. Мембрана располагается в <mark>узле</mark> данной моды для минимизации поглощения;

- Симметричная мода связана с тёмным портом и используется для измерения положения мембраны. Мембрана располагается в пучности данной моды для увеличения отклика;
- Как и в гравитационных антеннах, движение мембраны приводит к появлению связи между модами. В результате часть энергии накачки переходит в симметричную моду и детектируется фотодетектором.

Симметричная и асимметричная моды — вырождены при неподвижной мембране, и возбуждаются светом одной и той же частоты ω_0 .

Mechanical properties. Cryogenics vs. room temperature

∮go back

High-stress stoichiometric ${\rm Si_3N_4}$ membranes have high $\Omega_m Q_m \simeq 10^{13}$ even at room temperature

Ш.Л. Данилишин ОМ эксперимент в университете Ганновера

What happens if one decreases the beam radius?

Basically, critical power become lower, but influence on eigenfrequencies is not very significant.

What happens if one decreases the beam radius?

Basically, critical power become lower, but influence on eigenfrequencies is not very significant.

Ш.Л. Данилишин ОМ эксперимент в университете Ганновера

Can the beam displacement make degenerate modes non-degenerate?

Frequency shift at cryogenic temperatures

