ТЕОРИИ С БОЛЬШИМИ ДОПОЛНИТЕЛЬНЫМИ ИЗМЕРЕНИЯМИ

Эмин Нугаев

ИЯИ РАН, Москва

Зачем нужны дополнительные измерения?

- Они могут помочь объединить гравитацию и материю

Kaluza 1921,
Klein 1926

Теория Калуца-Клейна: 5-ти мерная метрика имеет дополнительные компоненты, которые могут быть интерпретированы как 4-х мерные векторные и скалярные поля

$$
g_{A B}=\left(\begin{array}{ll}
g_{\mu \nu} & A_{\mu} \\
A_{\nu} & \phi
\end{array}\right)
$$

Дополнительные измерения \Rightarrow неабелевы калибровочные поля.

Зачем нужны дополнительные измерения?

- Они могут помочь объединить гравитацию и материю

Kaluza 1921,
Klein 1926

Теория Калуца-Клейна: 5-ти мерная метрика имеет дополнительные компоненты, которые могут быть интерпретированы как 4-х мерные векторные и скалярные поля

$$
g_{A B}=\left(\begin{array}{ll}
g_{\mu \nu} & A_{\mu} \\
A_{\nu} & \phi
\end{array}\right)
$$

Дополнительные измерения \Rightarrow неабелевы калибровочные поля.

- ... необходимы в теории струн

Единственным непротиворечивым подходом к квантовой теории гравитации в настоящее время является теория суперструн. Однако, эта теория может быть последовательно сформулирована только в 10 измерениях. Таким образом, если теория струн реализуется в природе, должны существовать дополнительные измерения.
. . . могут помочь решить проблемы 4-х мерных теорий, например

* Проблему калибровочной иерархии, т.е. огромную разницу между масштабом электрослабого нарушения Dvali 1998; Randall,
Sundrum 1999
и планковским масштабом

$$
\frac{M_{P l}}{M_{W}}=10^{17} .
$$

- ... могут помочь решить проблемы 4-х мерных теорий, например
* Проблему калибровочной иерархии, т.е. огромную разницу между масштабом электрослабого нарушения и планковским масштабом

$$
\frac{M_{P l}}{M_{W}}=10^{17}
$$

* Происхождение трех фермионных поколений и массы нейтрино.

Arkani-Hamed, Dimopulous, Dvali 1998; Randall,
Sundrum 1999

Arkani-Hamed, Schmaltz 1998; Gherghetta, Pomarol, 2000; Frere, Libanov,
Nugaev, Troitsky 2000

- ... могут помочь решить проблемы 4-х мерных теорий, например
* Проблему калибровочной иерархии, т.е. огромную разницу между масштабом электрослабого нарушения и планковским масштабом

$$
\frac{M_{P l}}{M_{W}}=10^{17}
$$

* Происхождение трех фермионных поколений и массы нейтрино.
* Проблему космологической постоянной.

Arkani-Hamed, Dimopulous, Dvali 1998; Randall,
Sundrum 1999

Arkani-Hamed, Schmaltz 1998; Gherghetta, Pomarol, 2000; Frere, Libanov,
Nugaev, Troitsky 2000
Arkani-Hamed et al, 2000,2002; Kashru, Schulz, Silverstein 2000;

- ... могут помочь решить проблемы 4-х мерных теорий, например
* Проблему калибровочной иерархии, т.е. огромную разницу между масштабом электрослабого нарушения и планковским масштабом

$$
\frac{M_{P l}}{M_{W}}=10^{17}
$$

* Происхождение трех фермионных поколений и массы нейтрино.
* Проблему космологической постоянной.
* Загадку космических лучей сверхвысоких энергий.

Arkani-Hamed, Dimopulous, Dvali 1998; Randall,
Sundrum 1999

Arkani-Hamed, Schmaltz 1998; Gherghetta, Pomarol, 2000; Frere, Libanov,
Nugaev, Troitsky 2000
Arkani-Hamed et al, 2000,2002; Kashru, Schulz, Silverstein 2000;
Jain, McKay, Panda, Ralstor 2001;Anchordoqui et al, 2001; Kachelreiss, Plumacher, 2000

- ... могут помочь решить проблемы 4-х мерных теорий, например
* Проблему калибровочной иерархии, т.е. огромную разницу между масштабом электрослабого нарушения и планковским масштабом

$$
\frac{M_{P l}}{M_{W}}=10^{17}
$$

* Происхождение трех фермионных поколений и массы нейтрино.

Arkani-Hamed, Schmaltz 1998; Gherghetta, Pomarol, 2000; Frere, Libanov,
Nugaev, Troitsky 2000
Arkani-Hamed et al, 2000,2002; Kashru, Schulz, Silverstein 2000;
Jain, McKay, Panda, Ralstor 2001;Anchordoqui et al, 2001; Kachelreiss,

Plumacher, 2000
-...служат теоретической лабораторией для проверки новых идей и подходов к старым проблемам.

- ... могут помочь решить проблемы 4-х мерных теорий, например
* Проблему калибровочной иерархии, т.е. огромную разницу между масштабом электрослабого нарушения и планковским масштабом

$$
\frac{M_{P l}}{M_{W}}=10^{17}
$$

* Происхождение трех фермионных поколений и массы нейтрино.

Arkani-Hamed, Schmaltz 1998; Gherghetta, Pomarol, 2000; Frere, Libanov,
Nugaev, Troitsky 2000
Arkani-Hamed et al, 2000,2002; Kashru, Schulz, Silverstein 2000;
Jain, McKay, Panda, Ralstor 2001;Anchordoqui et al, 2001; Kachelreiss,

Plumacher, 2000
-...служат теоретической лабораторией для проверки новых идей и подходов к старым проблемам.

- ...просто интересные и увлекательные теории.

Почему дополнительные измерения невидимы?

- Они компактны и малы

Почему дополнительные измерения невидимы?

- Они компактны и малы

- ... и каков характерный размер?

Должен определяться гравитационным взаимодействием. В естественной системе единиц

$$
\hbar=c=1 \Rightarrow 1\left\lceil\ni_{\ni} \mathrm{B}=\frac{1}{2 \cdot 10^{-14} \mathrm{CM}}\right.
$$

константа гравитационного взаимодействия

$$
G_{N}=6.67 \times 10^{-11} \mathrm{~m}^{3} \mathrm{kr}^{-1} \mathrm{c}^{-2}=6.7 \times 10^{-39} \frac{1}{{ }_{\ni} \mathrm{B}^{2}}
$$

является единственным размерным параметром и определяет масштабы энергий (масс) и длин (времен):

$$
\begin{aligned}
M_{P l} & =\frac{1}{\sqrt{G_{N}}}=1.2 \times 10^{19} \Gamma \ni \mathrm{~B}=2.1 \times 10^{-5}\ulcorner \\
L_{P l} & =\frac{1}{M_{P l}}=1.7 \times 10^{-33} \mathrm{CM}=5.5 \times 10^{-44} \mathrm{C}
\end{aligned}
$$

- ... и каков характерный размер?

Должен определяться гравитационным взаимодействием. В естественной системе единиц

$$
\hbar=c=1 \Rightarrow 1 \Gamma_{\ni} \mathrm{B}=\frac{1}{2 \cdot 10^{-14} \mathrm{CM}}
$$

константа гравитационного взаимодействия

$$
G_{N}=6.67 \times 10^{-11} \mathrm{~m}^{3} \mathrm{kr}^{-1} \mathrm{c}^{-2}=6.7 \times 10^{-39} \frac{1}{{ }_{\ni \ni} \mathrm{B}^{2}}
$$

является единственным размерным параметром и определяет масштабы энергий (масс) и длин (времен):

$$
\begin{aligned}
M_{P l} & =\frac{1}{\sqrt{G_{N}}}=1.2 \times 10^{19} \Gamma \ni \mathrm{~B}=2.1 \times 10^{-5}\ulcorner \\
L_{P l} & =\frac{1}{M_{P l}}=1.7 \times 10^{-33} \mathrm{CM}=5.5 \times 10^{-44} \mathrm{C}
\end{aligned}
$$

Размер дополнительных измерений очень мал: $L_{P l}$!
(6) На сегодняшний день мы достигли масштабов $\sim \mathrm{T}_{\ni} \mathrm{B}^{-1} \simeq 10^{-17} \mathrm{~cm} \simeq 10^{16} L_{P l}$!

Можно ли обойти полученное ограничение на размер дополнительных измерений?

Можно ли обойти полученное ограничение на размер дополнительных измерений?

- Гравитационная постоянная определяется из закона Ньютона

$$
\begin{gathered}
\vec{F}(r)=-\frac{1}{M_{P l}^{2}} \frac{\vec{r}}{r} \frac{m_{1} m_{2}}{r^{2}}=-m_{2} \vec{\nabla} V(r) \\
\Delta V=\frac{4 \pi}{M_{P l}^{2}} m_{1} \delta(\vec{r}) \\
m_{2} \int d^{3} r \Delta V=-\oint d \vec{s} \vec{F}=\frac{4 \pi}{M_{P l}^{2}} m_{1} m_{2}
\end{gathered}
$$

- Закон Ньютона зависит от числа измерений.

Рассмотрим $(2+1)$-мерный случай: одно пространственное измерение компактно, второе - нет.

При $r \gg L$
$\oint d \vec{s} \vec{F}=4 \pi L F(r)=-\frac{2 \pi}{M_{(3)}} m_{1} m_{2}$
$F(r)=-\frac{1}{M_{(3)}} \frac{m_{1} m_{2}}{2 L} \simeq$
$-\frac{1}{M_{(3)}} \frac{m_{1} m_{2}}{V_{\text {Доп. изм. }}}$

- Закон Ньютона зависит от числа измерений.

Рассмотрим $(2+1)$-мерный случай: одно пространственное измерение компактно, второе - нет.

При $r \gg L$
$\oint d \vec{s} \vec{F}=4 \pi L F(r)=-\frac{2 \pi}{M_{(3)}} m_{1} m_{2}$
$F(r)=-\frac{1}{M_{(3)}} \frac{m_{1} m_{2}}{2 L} \simeq$
$-\frac{1}{M_{(3)}} \frac{m_{1} m_{2}}{V_{\text {Доп. изм. }}}$
B общем случае d дополнительных измерений получаем

$$
\begin{gathered}
F(r)=-\frac{1}{M_{(d+4)}^{2+d}} \frac{m_{1} m_{2}}{r^{2+d}} \text { при } r \ll L \\
F(r)=-\frac{1}{M_{(d+4)}^{2+d} V_{d}} \frac{m_{1} m_{2}}{r^{2}} \text { при } r \gg L
\end{gathered}
$$

Эффективная масса Планка

- Эффективная четырехмерная масса Планка равна

$$
M_{P l}^{2}=M_{(d+4)}^{2+d} V_{d}
$$

Рассмотрим частные случаи. Пусть $M_{(d+4)}=1$ Тэ B - позволяет решить проблему калибровочной иерархии,

d	L
1	$10^{15} \mathrm{~cm} \sim 100$ a.e.
2	1 mm
3	$10^{-6} \mathrm{~cm}$

На сегодняшний день закон Ньютона экспериментально проверен вплоть до 0.1 мм. Таким образом, даже случай $d=2$ экспериментально еще не закрыт!

- Бесконечно большие дополнительные измерения. Модель Рэндалл-Сандрам.

Randall, Sundrum 1999
Брана (тонкая доменная стенка) находится в точке $z=0$ пятимерного пространства-времени с отрицательной космологической постоянной Λ. При определенном соотношении между Λ и натяжением браны (плотностью энергии браны) решение уравнений Эйнштейна будет

$$
d s^{2}=a^{2}(z) \eta_{\mu \nu} d x^{\mu} d x^{\nu}-d z^{2}
$$

с масштабным фактором $a(z)$

$$
a(z)=\mathrm{e}^{-k|z|} .
$$

Здесь k является комбинацией космологической постоянной и натяжения браны.

Благодаря $a(z)$ гравитация на бране является четырехмерной!

Почему дополнительные измерения никак не проявляют себя
в других взаимодействиях?

Почему дополнительные измерения никак не проявляют себя в других взаимодействиях?

- Редукция Калуцы-Клейна.

Решением уравнения Клейна-Гордона для безмассового скалярного поля с периодическими граничными условиями

$$
\partial^{2} \Phi(x, z) \equiv\left(\partial_{\mu}^{2}-\partial_{z}^{2}\right) \Phi=0, \quad \Phi(x, z)=\Phi(x, z+2 \pi L)
$$

является

$$
\Phi(x, z)=\sum_{n} \varphi_{n}^{c}(x) \cos \left(\frac{n z}{L}\right)+\varphi_{n}^{s}(x) \sin \left(\frac{n z}{L}\right)
$$

$$
\partial_{\mu}^{2} \varphi_{n}^{s, c}+\frac{n^{2}}{L^{2}} \varphi^{s, c}=0
$$

Дополнительные измерения \Leftrightarrow бесконечный набор полей -Калуца-Клейновская башня - с массами $M_{n}=\frac{n}{L}$.
При достаточно малых L в спектре низкоэнергетической присутствует только нулевая мода $\varphi_{0}^{c}(x) \ldots$

- ... а что будет в случае больших дополнительных измерений?

При $L=1$ мм

$$
M_{1}=\frac{1}{L}=2 \times 10^{-4} \ni B
$$

и мы обнаружили бы вплоть до энергии 100 ГэВ

$$
\frac{100 \text { ГэВ }^{M_{1}} \simeq 10^{13} \text { новых состояний! }{ }^{\prime} \text {. }}{}
$$

- ... а что будет в случае больших дополнительных измерений?

При $L=1$ мм

$$
M_{1}=\frac{1}{L}=2 \times 10^{-4} \ni B
$$

и мы обнаружили бы вплоть до энергии 100 ГэВ

$$
\frac{100 \text { Гэ } B}{M_{1}} \simeq 10^{13} \text { новых состояний! }
$$

!!! НУХЖЕН ДРУГОЙ МЕХАНИЗМ !!!

Локализация на доменной стенке.

- Кинк (доменная стенка).

Рассмотрим в пятимерном пространстве-времени скалярное поле с лагранжианом

$$
\mathcal{L}=\frac{1}{2}(\partial \varphi)^{2}-\frac{\lambda}{2}\left(\varphi^{2}-v^{2}\right)^{2}
$$

В этой модели существует устойчивое статическое решение уравнений движения

$$
\begin{gathered}
\partial_{z}^{2} \varphi-2 \lambda \varphi\left(\varphi^{2}-v^{2}\right)=0 \\
\varphi(z \rightarrow \pm \infty)= \pm v
\end{gathered}
$$

называемое кинком - простейшим топологическим солитоном

$$
\varphi_{k}(z)=v \operatorname{th}(\sqrt{\lambda} v z)
$$

- Фермион в поле кинка.

Рассмотрим безмассовый фермион, взаимодействующий с полем φ. Уравнение Дирака для такого фермиона в поле кинка имеет вид

$$
i \partial_{t} \Psi+i \gamma_{0} \gamma_{i} \partial_{i} \Psi=\left(\gamma_{0} \gamma_{5} \partial_{z}+g \varphi_{k} \gamma_{0}\right) \Psi \equiv H_{z} \Psi
$$

Если бы $\varphi=v$, то это было бы уравнение для фермиона с массой $g v$. Во внешнем поле кинка фермион имеет массу gv вне стенки, и нулевую массу на стенке. Поэтому фермион притягивается к стенке.

Будем искать решение в виде

$$
\begin{gathered}
\Psi(x, z)=\sum_{n} \psi_{n}(z) \otimes \chi_{n}(x) \\
H_{z} \psi_{n}=\left(\begin{array}{cc}
0 & -\partial_{z}+g \varphi_{k} \\
\partial_{z}+g \varphi_{k} & 0
\end{array}\right) \psi_{n}=m_{n} \psi_{n}
\end{gathered}
$$

- Два свойства последнего уравнения:
* Существует одна нулевая мода, локализованная на стенке, и она левая

$$
\left.\begin{array}{l}
\psi_{0}=\binom{\exp \left[-g \int^{z} \varphi_{k}(y) d y\right.}{0}=\left([\operatorname{ch} \sqrt{\lambda} v z]^{-\sqrt{\frac{g^{2}}{\lambda}}}\right. \\
0
\end{array}\right)
$$

Фермионный спектр

При $m>g v$ спектр непрерывный.

- Два свойства последнего уравнения:
* Существует одна нулевая мода, локализованная на стенке, и она левая

$$
\left.\begin{array}{c}
\psi_{0}=\left(\exp \left[-g \int_{k}^{z} \varphi_{k}(y) d y\right]=(\operatorname{ch} \sqrt{\lambda} v z]-\sqrt{\frac{g^{2}}{\lambda}}\right. \\
0
\end{array}\right)
$$

При $m>g v$ спектр непрерывный.
(:) Можно локализовать киральный фермион в дополнительных измерениях!

Происхождение трех фермионных поколений.

Frere,Libanov,Nugaev, Troitsky 2000-2005

- Наше четырехмерное пространство представляет собой кор вихря Абрикосова-Нильсена-Олесена в шестимерном пространстве-времени.
- Дополнительные измерения могут быть как бесконечно большими, так и компактными.
- B шестимерном пространстве существует лишь одно вектороподобное (по отношению к полям стандартной модели) поколение фермионов.

- Благодаря специальному взаимодействию фермионов с полями вихря, три нулевые моды соответствующей киральности локализуются в центре вихря. Эти три моды можно интерпретировать как три фермионных поколения стандартной модели.
- В результате взаимодействия поля Хиггса с полем вихря, первое получает ненулевое вакуумное среднее в коре вихря и стремится к нулю вне вихря.
- Взаимодействия фермионов с полем Хиггса дают фермионным нулевым модам ненулевые массы и смешивания в эффективной четырехмерной теории.
- Из-за разных профилей фермионных волновых функций возникает степенная иерархия фермионной массовой матрицы. При этом число параметров модели меньше числа параметров стандартной модели.
- Нейтрино приобретает ненулевую, но малую массу, если допустить существование правого нейтрино, свободно распространяющегося в дополнительных измерениях.
- Характерной чертой модели является предсказание процессов с нарушением лептонного числа. Причиной этого служит происхождение фермионов из одного поколения, благодаря чему ненулевые моды калибровочных бозонов могут приводить к нарушению номера поколения. Однако, при этом оказывается, что основным процессом будет распад каона

$$
K_{0} \rightarrow \mu^{ \pm} e^{\mp}
$$

Этот процесс дает ограничение на размер локализации калибровочных бозонов порядка $\left(10 \text { ТэВ }^{\prime}\right)^{-1}$.

Заключение

- Большие дополнительные измерения могут объяснить многие актуальные вопросы современноі физики, такие как
- проблему калибровочной иерархии;
- проблему происхождения фермионных поколений;
- проблему иерархии фермионной массовой матрицы;
- проблему массы нейтрино;
- проблему космологической постоянной и темной материи;
- ...и многие другие.
- Теории с большими дополнительными измерениями предсказывают множество новых явлений и эффектов, таких как
- исчезновение частиц «в никуда»;
- модификацию гравитации на сверхгалактических масштабах;
— редкие процессы;
- рождение квантовых черных дыр на ускорителях;
- ...и многие другие.
- Теории с большими дополнительными измерениями предсказывают множество новых явлений и эффектов, таких как
- исчезновение частиц «в никуда»;
- модификацию гравитации на сверхгалактических масштабах;
— редкие процессы;
- рождение квантовых черных дыр на ускорителях;
- ...и многие другие.
- Модели с большими дополнительными измерениями еще далеки от завершения:
- до сих пор не построен приемлемый механизм локализации калибровочных полей;
— не решена проблема сильной связи или возникновения духов в моделях с модифицированной гравитацией;
- ...и многие другие.

Неудивительно, что эти модели интересны и увлекательны.

Неудивительно, что эти модели интересны и увлекательны.

Осталось только открыть дополнительные измерения...

