Шаблон:Группа Квантовых и Прецизионных Измерений: различия между версиями

Материал из Кафедра физики колебаний
Перейти к навигации Перейти к поиску
Строка 89: Строка 89:
== Научные исследования в группе ==  
== Научные исследования в группе ==  


В группе прецизионных и квантовых измерений основные направления исследований тесно связаны с национальным проектом LIGO (США), цель которого состоит в создании лазерной (L) интерферометрической (I) гравитационно-волновой (G) обсерватории (О). Проект выполняется Калифорнийским Технологическим институтом, часть задач проекта возложена на группу кафедры (договор о содружестве, включающий финансирование исследований на факультете). LIGO должна создать качественно новый канал астрофизической информации, иначе говоря - гравитационно-волновую астрономию. Одна из первых задач LIGO состоит в обнаружении всплесков гравитационных волн, порождаемых при слиянии (столкновений) двух нейтронных звезд. Гравитационная волна, достигшая Земли, должна вызвать малые колебания DL расстояния L между двумя разнесенными пробными массами (DL = $$10^{-16}$$ см или меньше при расстоянии L = 4 км). В проекте пробные массы - это массивные зеркала (около 10 кг). Малые DL должны быть обнаружены высокочувствительным лазерным интерферометром.  
В группе прецизионных и квантовых измерений основные направления исследований тесно связаны с национальным проектом LIGO (США), цель которого состоит в создании лазерной (L) интерферометрической (I) гравитационно-волновой (G) обсерватории (О). Проект выполняется Калифорнийским Технологическим институтом, часть задач проекта возложена на группу кафедры (договор о содружестве, включающий финансирование исследований на факультете). LIGO должна создать качественно новый канал астрофизической информации, иначе говоря - гравитационно-волновую астрономию. Одна из первых задач LIGO состоит в обнаружении всплесков гравитационных волн, порождаемых при слиянии (столкновений) двух нейтронных звезд. Гравитационная волна, достигшая Земли, должна вызвать малые колебания DL расстояния L между двумя разнесенными пробными массами (DL = 10^{-16} см или меньше при расстоянии L = 4 км). В проекте пробные массы - это массивные зеркала (около 10 кг). Малые DL должны быть обнаружены высокочувствительным лазерным интерферометром.  


Одна из основных трудностей в этом проекте - подавление тепловых колебаний зеркал. Для этого необходимо существенно увеличить добротность подвеса зеркал (уменьшить трение). Профессору В.П.Митрофанову и н.с. К.В.Токмакову удалось разработать уникальную методику подвеса лазерного зеркала, при которой трение настолько мало, что время затухания превышает 108 сек (около трех лет!) при комнатной температуре. Руководство LIGO приняло решение применить эту методику в проекте.  
Одна из основных трудностей в этом проекте - подавление тепловых колебаний зеркал. Для этого необходимо существенно увеличить добротность подвеса зеркал (уменьшить трение). Профессору В.П.Митрофанову и н.с. К.В.Токмакову удалось разработать уникальную методику подвеса лазерного зеркала, при которой трение настолько мало, что время затухания превышает 10^8 сек (около трех лет!) при комнатной температуре. Руководство LIGO приняло решение применить эту методику в проекте.  


Другая проблема состоит в том, что существуют не только равновесные (тепловые) флуктуации но и флуктуации нетеплового происхождения (вызванные перераспределением свободной энергии из одних форм в другие). Эти флуктуации также могут создать имитацию всплесков гравитационного излучения. Доценту И.А.Биленко и аспиранту А.В.Агееву удалось разработать методику качественно новых измерений, которая позволила зарегистрировать такие флуктуации, определить условия их возникновения и "окраску", с помощью которой можно будет их отделить от гравитационного сигнала.  
Другая проблема состоит в том, что существуют не только равновесные (тепловые) флуктуации но и флуктуации нетеплового происхождения (вызванные перераспределением свободной энергии из одних форм в другие). Эти флуктуации также могут создать имитацию всплесков гравитационного излучения. Доценту И.А.Биленко и аспиранту А.В.Агееву удалось разработать методику качественно новых измерений, которая позволила зарегистрировать такие флуктуации, определить условия их возникновения и "окраску", с помощью которой можно будет их отделить от гравитационного сигнала.  


Малость величин DL на первом этапе LIGO и планируемое уменьшение DL на последующих (соответственно рост чувствительности), предопределяет необходимость вступления экспериментальной физики в принципиально новую область, в которой "поведение" больших макроскопических масс, в данном случае зеркал, будет определяться квантовыми законами, а не классическими. В частности при постоянной времени 108 сек зеркало "ведет себя" как квантовый объект в течение миллисекунды. Соответственно, должны измениться и методы измерений. Так, например, при повышении чувствительности на один порядок (DL - 10-17 см) придется отказаться от когерентной лазерной накачки. Недавно членам группы проф. Ф.Я.Халили и ст.н.с. Городецкому М.Л. удалось сформулировать новый метод измерения отклика зеркал на гравитационную волну, использующий так называемые симфотонные квантовые состояния (один из видов сжатых состояний). Этот метод сулит существенное повышение чувствительности Необходимо отметить и другой принципиально новый общий принцип квантовых измерений, найденный ст.н.с. С.П.Вятчаниным: так называемые вариационные измерения. Этот метод позволяет получить разрешение существенно лучше, чем при обычных координатных измерениях.  
Малость величин DL на первом этапе LIGO и планируемое уменьшение DL на последующих (соответственно рост чувствительности), предопределяет необходимость вступления экспериментальной физики в принципиально новую область, в которой "поведение" больших макроскопических масс, в данном случае зеркал, будет определяться квантовыми законами, а не классическими. В частности при постоянной времени 10^8 сек зеркало "ведет себя" как квантовый объект в течение миллисекунды. Соответственно, должны измениться и методы измерений. Так, например, при повышении чувствительности на один порядок (DL - 10^{-17} см) придется отказаться от когерентной лазерной накачки. Недавно членам группы профессорам Ф.Я.Халили и М.Л.Городецкому удалось сформулировать новый метод измерения отклика зеркал на гравитационную волну, использующий так называемые симфотонные квантовые состояния (один из видов сжатых состояний). Этот метод сулит существенное повышение чувствительности. Необходимо отметить и другой принципиально новый общий принцип квантовых измерений, найденный проф. С.П.Вятчаниным: так называемые вариационные измерения. Этот метод позволяет получить разрешение существенно лучше, чем при обычных координатных измерениях.  


Группа квантовых и прецизионных измерений, несмотря на всем известные трудности нашего переходного периода, развивает экспериментальные и теоретические исследования, опираясь на финансовую поддержку зарубежных и отечественных фондов.
Группа квантовых и прецизионных измерений, несмотря на всем известные трудности нашего переходного периода, развивает экспериментальные и теоретические исследования, опираясь на финансовую поддержку зарубежных и отечественных фондов.

Версия 13:59, 28 октября 2009